- The total number of electrons that take part in forming the bond in O2 is;
 - (a)

=(b)

(c)

H. HE H DE DE NO F ME HO MOS AT & DS

- The chemical formula for bleaching powder is;
 - CaOCl₂ (a)

CaCl₂ (b)

(c) CaOCI

CaOCl₃ (d)

SSF JAMIA MILLIA ISLAMIA New Delhi

- Which of the following represents the correct relation between Avogadro's 3. number (No), number of particles (N) and moles (n)?
 - (a) n = N/No

(b) n = No/N

(c) n = N No

- (d) All are correct
- Identify the correct symbol of gold;
 - Go (a)
- > (b)

Gd (c)

_(d) Au

D.

5. An element X has valency equal to 3. What will be its formula with

carbonate ions?

(a) X₂CO₃

-(b) XCO3

(c) X₂(CO₂)³

(d) X (CO₃)₃

6. The formula for Calcium phosphate is;

(a) CaPO₄

(b) Ca (PO₄)₂

(c) Ca₃ (PO₄)₂

(d) Ca₂ (PO₄)₃

SSF JAMIA MILLIA ISLAMIA New Delhi

A solution turns red litmus blue; its pH value is likely to be;

(a) I

(b) 4

(c) 5

(d) 10

8. The pair of ions having same electronic configuration is;

(a) Cr3+, Fe3+

(b) Fe3+, Mn2+

(c) Fe3+, Co3+

(d) Sc3+, Cr3+

9. Which of the following options does not represent ground state electronic configuration of an atom?

- 10. Which of the following statements about the electron is incorrect?
 - (a) It is a negatively charged particle.
 - __(b) The mass of electron is equal to the mass of neutron.
 - (c) It is a basic constituent of all atoms.
 - (d) It is a constituent of cathode rays.

SSF JAMIA MILLIA ISLAMIA New Delhi

- 11. An atom of an element has the electronic configuration 2, 8, 2. To which group does it belong?
 - (a) 4th group

(b) 6th group

(c) 3rd group

(d) 2nd group

Carbon belongs to the second period and Group 14. Silicon belongs to the 15. third period and Group 14. If atomic number of earbon is 6, the atomic number of silicon is;

- (a)
- o F, HE Haing Al, H

_(e) 24

- 16 (d)
- What is the atomic number of element of period 3 and group 17 of the 16. Periodic Table?
 - 10 (a)

4 (b)

17 (c)

(d) 21

SSF JAMIA MILLIA ISLAMIA New Delhi

- Which one of the following statements is not correct about the trends in the properties of the elements of a period on going from left to right?
 - The oxides become more acidic 1 (8)
 - The elements become less metallic (b)
 - There is an increase in the number of valence electrons _(c)
 - The atoms lose their electrons more easily (d)

		a of elem	ents is	written in order of their increasing
18	Wh	ich of the following set of elen	**********	
		allic character?		
	(a)	Na Li K	(b)	CQN
	(c)	Mg Al Si	(d)	Be Mg Ca
19	A m	netal 'M' is in the first group	of the	Periodic Table. What will be the
	form	ula of its oxide?		
	(a)	мо	(b)	M ₂ O
	(c)	M_2O_3		(d) MO ₂
		SSF JAMIA MILLIA ISLAN New Delhi	MIA	
20.	Elec	trovalent compounds are;		
	(a)	Low melting		(b) Insoluble in polar solvents
	(c)	Conductors in the fused stat	te (d)	none of the above
21.	Ionic	compounds don't conduct e	lectric	ity in;
	(a)	Solution	(b)	Fused state
-	_(c)	Solid state	(d)	none of the above
001 8	SET - A	D. D	81	

22.	The	bond between two atoms of the	he same	e element is;	
-	(3)	Polar covalent bond	(b)	Ionic bond	
	(c)	Non-polar covalent bond		(d) none of the above	
23.	An e	lement having 4 electrons in	its oute	ermost orbit forms bond by;	
	(a)	Losing electrons	(b)	Gaining electrons	
1	_ter	Sharing electrons	(d)	any of the above	
		SSF JAMIA MILI New De	LIA ISLA :lhi	MIA	
24.	The	percentage of ionic characte	rofat	bond is calculated by the differ	ence
	in;				
	(a)	Size of atoms	(b)	Ionization potential of atoms	
	N(C)	Electronegativity of atoms	(d)	Atomic volumes of atoms	
25.	Prote	ons play an important role in	which	type of bonding?	
	(a)	Electrovalent	(b)	Hydrogen	
	(c)	Covalent	_(d)	Coordinate	

**	- A - Com-	olecule with multiple coval	ent bonds	is;
26.		C ₂ H ₄	(b)	H ₂
	(a) (c)	F ₂	(d)	N ₂
27.	White	ch of the following element	s will for	m acidic oxide?
	-(a)	With atomic number 7	(b)	With atomic number 3
	(c)	With atomic number 12	(d)	with atomic number 19
28.	Whie	ch set out of them shows th	ie correct	sequence of metallic characters?
	(a)	Be, Mg, Ca	(b)	Na, Li, K
_	(0)	Mg, Al, Si	(d)	C, O, N
		SSF JAMIA MILLIA New Delt		
29.	The	number of electrons in vale	ence shell	l is equal to;
	(a)	Atomic mass	(b)	Group number
	(c)	Period number	, (d)	Atomic volume
30.	Whie	ch will lose electrons easil	y?	
	(a)	Mg	_(b)	Na
	(c)	K	(d)	Ca
D01 S	ET - A		[10]	

31.	AC II	ich of the following friend	to ridinar	
	(a)	Sodium	(b)	Gold
	Jes	Mercury	(d)	diamond
32.	The	atoms combine with anot	her to form	4
	(a)	Atoms	- (b)	Elements
	(c)	Matter	(d)	Molecules
33.	The	number of electrons in th	e valence s	hell varies from;
		0 to 8	_(b)-	
		1 to 6	-	1 to 10
	(0)	SSF JAMIA MILLIA	ISLAMIA	11010
34.	The	physical state of water at		erature is;
-	(6)	Liquid	(b)	Solid
	(c)	Gaseous	(d)	vapour
35,	Prot	on was discovered by;		
	(a)	Gold Stein	(b)	Chadwick
	(c)	J J Thomson	_(d)	Rutherford
No.			1111	

		outer most shell of an atom ca	have	a maximum of;
36.	The	outer most shell of an atom ca	III III	
50.	2.00		(b)	2
	(a)	6		
			_(et)	18
	(c)	8		
		520 MODE	***	hat can be accommodated in any
37.	The	maximum number of election	rons u	THE STATE OF THE S
	ener	gy level of the atom is;		
			753	n ²
	(m)	2n ²	(b)	11
			(4)	$2/n^2$
	(c)	2n	(d)	2/11
		SSF JAMIA MILLIA ISLAMIA		
		New Delhi		
20	A = 1	autous of anhalt is used in		
38.	ZAII 1	sotope of cobalt is used in;		
	(a)	Treatment of cancer	(b)	Vuol in muslam seesta
7	(4)	ricamient of cancer	(b)	Fuel in nuclear reactor
	(c)	Treating goiter	(4)	A11 -Ca1 - 1
(Cies	rrenting gotter	(d)	All of the above
39.	Alli	nert gas elements have sight	-1	
		Bar otomores have cignt	electro	ons in their outmost shell except;
	(3)	Neon		
100	20	100000	(b)	Argon
	(c)	Helium	14110	
		TAXABLE STATE OF THE STATE OF T	(d)	Krypton

40	W	ater decomposes into hydroge	en and ox	ygen by,
	(a)	Thermal decomposition	-(b)	Electrolysis
	(c)	Photolysis	(d)	None of the above
41.	Oxi	dation reaction involves;		
T	(a)	Loss of electrons	(b)	Addition of oxygen
	(c)	Removal of hydrogen	(d)	All of the above
42.	Whi	ch of the following has the h		ensity?
	(c)	Air	(d)	Honey
		SSF JAMIA MILLIA ISLAM New Delhi	IA	
3.	66°C	is equal to;		
_	(a)	339 K		(b) 207 K
	(c)	543 K		(d) 311K
4110000		144	440	

DOI SET-A

[13]

44.	The	The process where a liquid changes to gas;					
	(a)	Freezing	_(b)	Vaporization			
	(c)	Fusion	(d)	Condensation			
45.	Abs	olute alcohol is;					
	(a)	100% methanol	(b)	100% ethanol			
	(c)	5%+95% methanol		(d) 5%+95% ethanol			
		SSF JAMIA MILLIA ISI New Delhi	LAMIA				
46.	The	most reactive elements;					
-	(a)	Na	(b)	K			
	(c)	Ca	(d)	Mg			
47.	The	highest melting point is of;					
	(a)	Cao	_(b)	MgCl ₂			
	(c)	NaCl	(d)	CaCl ₂			

48.	Whi	ch of the following metho	ods is sui	table for preventing an iron frying
	pan	from rusting?		
	(a)	Applying pain	(b)	Applying grease
_	100	Applying coating zinc	4	All of the above
		SSF JAMIA MILLIA New Delh	ISLAMIA i	
49.	An c	element reacts with oxyger	n to give	a compound with melting point and
	it is	also soluble in water. The	element is	5;
_	-(ā)	Calcium	(b)	Carbon
	(c)	Silicon	< (d)	Iron
50.	Food	d cans are coated with tin a	and not w	ith zinc because;
-	<u>(a)</u>	Zinc is more costly than	tin	
	(b)	Zinc has high melting po	oint that t	in.
	(c)	Zinc is more reactive that	an tin	
	(d)	Zinc is less reactive than	ı tin	

		highest boiling point (K) o	rule comi	nound of carbon;
51	The	highest boiling point (N)	I the source	
	(a)	Chloroform (CHCl ₂)	_(b)	Methane (CH4)
	(c)	Acetic acid (CH ₃ COOH)	(d)	Ethanol (CH ₃ CH ₃ QH)
52.	The	formula for Butane;		
	(a)	C ₂ H ₆	—_(b) ³	C ₄ H ₁₀
	(c)	C_3H_8	(d)	C_5H_{12}
		SSF JAMIA MILLIA IS	LAMIA	

- The mass of 0.5 mole of N2 gas; 53.
 - 14 g (a)

(b) 15g

12 g (c)

- (d) 16 g
- Isotopes of an element have; 54.
 - The same physical properties (a)
 - Different chemical properties (b)
 - Different number of neutrons (c)
 - Different atomic numbers (d)

55.	Num	iber of valence electrons in C	T ion ar	re :
	(a)	16	(b)	8
	(c)	17	(d)-	18
56.	Whit	ch one of the following is a c	correct c	onfiguration of sodium?
	_(a)-	2, 8	(b)	8, 2, 1
	(c)	2, 1, 8	(d)	2, 8, 1
		SSF JAMIA MILLIA ISLA New Delhi	MIA	
57.	An I	sotope of Iodine is used in;		
_	(a)	Treatment of goiter	(b)	Treatment of cancer
	(c)	Nuclear reactor as fuel	(d)	All of the above
58.	Isob	ars are:		

(a) Calcium, Argon

Calcium, Carbon (b)

- (c) Protium, Tritium
- Carbon, chlorine (d)

The electrons distribution of Aluminium in different shells: 59.

(b) 2, 8, 0

(d) 2, 8, 4

60. The number of valency in Belium;

(a) 1

(b) 0

(c) 2

(d) 3

61. The chemical formula for copper nitrate;

- (a) Cu (NO₃)₂ (b) Cu (NO₂)₃
- (c) Cu NO₃ (d) Cu (NO₃)₃

SSF JAMIA MILLIA ISLAMIA New Delhi

Which of the following is not mixture? 62.

> Sea Water (a)

(b) Pure water

(c) Air

(d) Brass

DOI SET-A

[18]

63	S.I.	unit of pressure is;		
	(a)	Cubic Meter		(b) Kilogram
1	(0)	Pascal		(d) Kilogram per Cubic Meter
64.	Meta	als are the elements that;		
-	(11)	Lose electrons	(b)	Gain Electrons
	(c)	Share electrons	(d)	none of the above
		SSF JAMIA MIL New D	LIA ISLAN elhi	IIA
65.	Whit	ch of the following contain	s maximu	im number of molecules?
	(a)	19 CO ₂	(b)	1 g N ₂
	(c)	1 g H ₂		(d) l g CH
66.	White	ch of the following represe	ents a com	rect chemical formula?
	⟨(a)	CaCl	-j(b)-	BiPO ₄
	(0)	NaSO ₄	(d)	NaS

MATHEMATICS

- 67. If tan 2A=cot (A-24°), then A is;
 - (a) 12°

(b) 24°

(e) 36°

(d) 38°

- 68. The total surface are of hemisphere of radius 7cm is;
 - (a) 462 cm²

(b) 154 cm²

(c) 308 cm²

(d) 46.34 m²

SSF JAMIA MILLIA ISLAMIA New Delhi

- 69. In a circle of radius 7, the angle of sector is 60°. Then the area of sector is:
 - (a) 27.6 cm²

(b) 110 cm²

(c) 36.6 cm²

(d) 55 cm²

- 70. In an A.P. if d=-4, n=7, $a_n=4$, then a is;
 - (a) 7

一年 28

(c) 20

(d) 6

DOI SET-A 00 24 = 4 [20]

- For the quadratic equation 2x2-4x+3=0, the roots are
 - Real and equal (m)

Real and distinct (6)

Can't be said (c)

(d) not real -20

1/a, (3-a)/3a, (3-2a)/3a,..... (a ≠0)

The common difference is;

16 ± 14-4x2x3

(b)

300-29

(c) -1/3

3 (d)

SSF JAMIA MILLIA ISLAMIA **New Delhi**

- The circumference of a circle of radius 7.7 cm is
 - 48.4 cm (a)

(b) 4 44 m

(c) 44.4 cm (d) 48.4 m

30 - 4 - 3-29 - (3-9)

Entrance Examination - 2021 - 22

-393 = - 303.

The lower limit of modal class of the following data is;

4 110	60-80	80-100			
Marks Obtained	0-20	20-40	40-60	7	4
			12		
Number of student	8	10	1-		

20 (a)

40 (b)

60 (c)

100 (d)

SSF JAMIA MILLIA ISLAMIA

The value of $(1 + \cot^2 2\theta) \sin^2 2\theta$ is; 75.

> 2 (a)

(b) 0

(c) -I

(d) I

A solid sphere of radius 2r is melted and cast into the sphere of a solid cone 76. 4 XOUNT AND of height r, and then the radius of the base of a cone is;

(√2) r (a)

(b) (√2 r)

(c) 4((√2) r

(d) 4(√2 r)

DOI SET-A

[22]

77. If sec A= cosec B, then A+B is;

(a) 90°

450 (b)

60° (c)

180° (d)

The value of tan 48°, tan 13°, tan 42°, tan 77° is;

(a) -1

- ton 47 (ton

0.5 (c)

(d) '12

If the distance between the points A (O, O) and B(x,-5) is 5 units, then the

value of x

(c) (4, -4)

(b) (-2,2) (2,-5) (2,-5) (2,-5) (3,-3) $(0-x)^2+(0+5)^2-5$ (2+25)=25=0

For what value of k, -4 is a zero of the polynomial $x^2-x-(3k+2)$;

(a)

(b)

(c)

7 3 (21-0)2+(-5-0)2-25 = -6 22+25=20 4. P-6 22+25=20

- The probability of face cad of spade from a pack of cards is; 85.
 - 2/52 (a)

1152 (b)

5/52 (c)

- 3/52 (d)
- If in an A.P., a= 15, d=-3, and an=O, then n is; 86.
 - (a)

5 (c)

SSF JAMIA MILLIA ISLAMIA New Delhi

- The point (3, a) lies on the line represented by 2x-3y=5 for the value of 'a'; 87.

(b)

6-34=5

(c) 1/5

- (d) 1/7
- The missing term in the following A.P. is; 2, ---, 22 88.

(c) 12

- (b) 6 4(d) 8

- A wire in shape of a square of side 88cm, is bent so as to form a circular
 - ring, the radius of the circle is;
 - 46 (a)

89.

96 (0)

- If tan 8= 1N3, the value of sin (90°-8) is; 90.
 - (a) 0

(b)

V3 V2 (d)

SSF JAMIA MILLIA ISLAMIA New Delhi

- 91. The ratio of the areas of a circle and an equilateral triangle whose diameter and a side are respectively equal is:
 - 4π√3 (a)

(b) π/(√3 a)

 $\pi/\sqrt{3}$ (c)

- (d) $2\pi/\sqrt{3}$

92. The mode of the following distribution is;

Weight (in Kg)	35	40	45	50	55	60
Number of children	6	10	22	15	9	8

(a) 22

(b) 55

(c) 8

(d) 45

SSF JAMIA MILLIA ISLAMIA New Delhi

93. The pair of equation x=2 and y+ 7=0 has;

(a) One solution

- (b) Two solution
- (c) Infinite many solutions
- (d) No solution

94. The zeroes of the quadratic polynomial x^2 -88 x+ 125=0 are

(a) Both negative

_(b) One positive and one negative

(c) Both positive

(d) Both equal

gg. In a statistical data, the difference between mode and mean is k times the difference between median and mean then the value of k is;

(a) 4

(b) 3

(c) 2

(d) 6

100. If the product of the roots of the equation $x^2-9x+k=10$ is 5, then the value

of k is;

くな= ら

(a) 15

(b) 5

K = 10

(c) TO

(e) 4

SSF JAMIA MILLIA ISLAMIA New Delhi

101. If ΔABC is right angled at B, then sin (A+C) is;

(a) 0

(b) 1/√2

(0) 1

(d) 1/\square

Sing 0

106. The 9th term from the end of the A.P. 5, 9, 13,...... 185 is;

(a) 153

(b) 37

(c) 185

(d) 217

185+68×4 かりは5+3レカン17

107. The value of p for which the polynomial x3+4x2-px+8=0 is exactly divisible

by (x-2);

(a) 6

(b) 12

(c) 14

(d) 16

SSF JAMIA MILLIA ISLAMIA New Delhi

108. A circle has a number of tangents equal to;

(a) 0

(b) 1

(c) 2

(d) Infinite

109. Ifa parallelogram circumscribes a circle, then it is a;

(a) Square

(b) Rectangle

(c) Rhombus

(d) None of the above

114. Two parallel Lines touch the circle at points A and B respectively. If area of

the circle is 25n cm2, then AB is equal to;

(a) 5 cm

(b) 8 cm

(c) 10 cm

(d) 25 cm

SSF JAMIA MILLIA ISLAMIA

115. In figure AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30° The AT is equals to:

(a) 2√3 cm

(b) 4 cm

*(c) 4√3 cm

(d) 2 cm

116. If x and y are complementary angles, then

(a) $\sin x = \sin y$

(b) $\tan x = \tan y$

(c) $\cos x = \cos y$

(d) $\sec x = \csc y$

[33]

117. $\sin 2B = 2 \sin B$ is true when B is equal to:

(a) 90°

(b) 0°

(c) 30°

(d) 60°

118. If A and (2A - 45°) are acute angles such that sin A = cos (2A - 45°), then tan A is equal to;

(a) 0

(b) 1√3

(c) 1

(d) √3

SSF JAMIA MILLIA ISLAMIA New Delhi

119. If $\sin \theta + \sin^2 \theta = 1$, then $\cos^2 \theta + \cos^2 \theta$ is;

(a) -1

(b) 0

(c) 1

(d) 2

120. The minimum value of sin A, 0≤ A ≤ 90°;

(a) -1

(b) 0

(c) 1

(d) 12

DOLSET-A

[34]

	(a)	1	(b)	0
	(c)	1√3	(d)	√3
122.	The	surface area of cuboid-shaped	d box l	naving length=80 cm, breadth=40cm
	and I	height=20cm is;		
	(a)	13000 cm ²	(b)	13400 cm ²
	(c)	12000 cm ²	(d)	11200 cm ²
		SSF JAMIA MILLIA I New Delhi	SLAMI	A
123.	The		ght circ	cular cylinder is 4.4 cm ² . The radius
	of th	ne base is 0.7 cm. The height	of the	cylinder will be;
	(a)	2	(b)	3
	(c)	4	(d)	6
124.	The	diameter of the base of a co	ne is l	10.5 cm, and its slant height is 10 cm
	The	curved surface area is;		
	(a)	150 cm ²	(b) 177 cm ²
	(c)	165 cm ²	(d) 180 cm ²
D01 :	SET-	A	[35]	Entrance Examination - 2021 - 22

121. If $\cos 9A = \sin A$ and $9A < 90^{\circ}$, then the value of $\tan SA$ is;

125. A cuboid having surface areas of 3 adjacent faces as a, b and c has the

volume:

(b) Vabc

(a) 3 Vabc

(d) (abc)2

(c) abc

SSF JAMIA MILLIA ISLAMIA New Delhi

126. The radius of a cylinder is doubled and the height remains the same. The ratio between the volumes of the new cylinder and the original cylinder is:

(a) 1:2

(b) 3:I

(c) 1:8

(d) 4:1

127. The centroid of a triangle ABC, A (-2, 3), B (2,-1), C (4, 0) is;

(a) (2/3, 1/3)

(b) (1/3, 2/3)

(c) (4/3, 2/3)

(d) (-4/3,2/3)

128. The Arithmetic mean of 1,2,3,4n, is;

(a) n/2

(b) (n/2) + 1

(c) (n-1)/2

(d) (n+1)/2

DOI SET-A

[36]

129. If $\sin A = 1/2$ and $\cos B = 1$, the value of (A+B);

20,

(a) 30°

(b) 45°

(c) 60°

- (d) 75°
- 130. If AB=BC= a units and AC= ($\sqrt{2}$) a units of the sides of triangle ABC, then $\angle B$ is;
 - (a) 45°

(b) 30°

(c) 60°

(d) 90°

SSF JAMIA MILLIA ISLAMIA New Delhi

- 131. If $x=a \csc\theta$, $y=a \cot\theta$, then x^2-y^2 is equal to;
 - (a) I

(b) -a²

(c) a2

- (d) -1
- 132. If $\sin \theta = (\sqrt{3})/2$, then the value of $\cot \theta$ is;
- 53, 60,

(a) 2

(b) 1/1/3

(c) \square

(d) 1√2

- ar is -2, 2 Section 1987 III - No. Residence Superingening | Sept. 19.

PHYSICS

134. A particle is moving in a circular path of radius r. The displacement after half a circle would be;

(a) Zero

(b) πr

(c) 2r

- (d) 2πr
- 135. If the displacement of an object is propolitional to square of time, then the object moves with
 - (a) Uniform velocity
- (b) Uniform acceleration
- (c) Increasing Acceleration
- (d) Decreasing acceleration

SSF JAMIA MILLIA ISLAMIA New Delhi

136. from the given v-t graph, it can be inferred that the object is;

- (a) In uniform motion
- (b) At rest
 - (c) In non-uniform motion
 - (d) Moving with uniform acceleration

137	Mor	se of a velocity-time gro	ph gives:		
	(0)	The distance		(b)	The displacement
-	(0)	The acceleration	(d)	The	speed
138.	In w	which of the following	cases of mo	tions	, the distance moved and the
	mag	nitude of displacement	are equal?		
	(a)_	If the car is moving o	n a straight re	ond	
	(b)	If the car is moving in	Circular pat	h	
	(c)	The pendulum is mov	ing to and fro	9	
	(d)	The earth is revolving	g around the s	un	
		SSF JAMIA MILLIA II New Delhi	SLAMIA		
139.	What	t is the net force on th	ne particle if	it is :	simultaneously acted upon by
	two f	orces 4 N and 3 N?			
	(a)	IN	(b)	7 N	
	(c)	21 N	(d)	Bety	veen 7 N and 1N
001 SE	T-A		[40]		
					Entrance Examination - 2021 - 22

- 140. If the magnitude of the resultant force of two forces is lesser than the magnitude of the larger force, then
 - The two forces are perpendicular to each other (a)
 - They two forces in opposite directions (b)
 - The forces are different in magnitude and direction (c)
 - The forces possess small magnitude (d)
- 141. Two forces F1 →and F2→that are perpendicular to each other act on a point mass. The resultant force in the point mass is given by
 - (a) F1+F2

(b) F1-F2

(c) FI2+F22

(d) √(F12+F22)

SSF JAMIA MILLIA ISLAMIA

142. Which of the following is true for the given diagram?

(b)

150. The final kinetic energy of a block of mass if the mass of the block is 10kg and has a constant velocity of 10m/s. The block of mass is subjected to a retarding force of F=0.1J/m;

275] (a)

250J (b)

4751 (c)

450J (d)

151. By how much does kinetic energy increase if the momentum is increased by

20%:

55% (a)

44% (c)

- (d) 77% 5my + my + 1 801V

SSF JAMIA MILLIA ISLAMIA

- A force F acts between two charges +Q and -Q that is placed at a certain distance from each other. The third sphere of charge Q is placed between them. What is the magnitude and force experienced by the third charge?
 - 3F in the direction of +Q charge (a)
 - 8F in the direction of -Q charge (b)
 - 4F in the direction of +Q charge (c)
 - No direction and magnitude is zero

The heating element of an electric iron is made up of:				
(a) Copper	~(h)	Nichrome		
(c) Aluminium	(d)	Iron		
The electrical resistance of i	nsulators is;			
(a) High	(b)	Low		
(c) Zero	_(d)	Infinitely High		
Electrical resistivity of any (a) Its thickness	given metal	(b) Its shape		
. Electric power is inversely	proportions	al to;		
(n) Resistance	(b) Voltage		
Ver Current	(d) Temperature		
	(a) Copper (c) Aluminium The electrical resistance of i (a) High (c) Zero SSF JAMIA MILL New De Electrical resistivity of any (a) Its thickness (c) Nature of the materia Electric power is inversely (a) Resistance	(a) Copper (b) (c) Aluminium (d) The electrical resistance of insulators is: (a) High (b) (c) Zero (d) SSF JAMIA MILLIA ISLAMIA New Delhi Electrical resistivity of any given metal (a) Its thickness (c) Nature of the material (d) Electric power is inversely proportions (a) Resistance (b)		

165. What is the commercial unit of	clectric	an ever-by
(a) Joules	(b)	
(e) Kilowatt-hour	_(d)	Watt-hour
166. Three resistors of 1Ω , 2Ω and 3 resistance of the three resistors s		connected in parallel. The combine
(a) Greater than 3 Ω		Less than IΩ 25+3+2-32
(c) Equal to 2 Ω	_	(d) Between 1 Ω and 3 Ω
SSF JAMIA MILLIA I New Delhi		
67. An electric bulb is connected to	a 220	V generator. The current is 0.50 A
What is the power of the bulb?		220x 1 x502
(a) 440 W	(b)	110 w
(c) 55 w	(d)	0.0023 w
8. The resistivity of insulators is of	the orde	er of;
(a) 10-80-m	(b)	1010-m
(c) 10-60-m	(d)	1060-m

(a) 3.6 × 10-6J

(b) (1/3.6) × 106J

(c) 3.6×106J

(d) (1/3.6) × 10-6J

170. 100 J of heat is produced each second in a 4 Ω resistor. The potential difference across the resistor will be;

(a) 30 v

(b) 10 v

(c) 20 v

(d) 25 v

SSF JAMIA MILLIA ISLAMIA New Delhi

171. A full length image of a distant tall building can definitely be seen by using;

- (a) A concave mirror
- (b) A convex mirror
- (c) A plane mirror
- (d) Both concave as well as plane mirror

172. Th	e laws of reflection hold	good for:		
	Plane mirror only			
(b)	Concave mirror only			
(c)	Convex mirror only			
(d)	All mirrors irrespective	ve of their sh	nape	
173. Ligh	nt travel fastest in;			
(a)	Water	~	(b) Air	
(c)	Glass	(d)	Diamond	
	SSF JAMIA MILLIA IS New Delhi	LAMIA		
174. The	mirror having reflection	surface cur	ved outward;	
(a)	Plane mirror		(b) Concave mirror	
407	Convex mirror	(d)	cylindrical mirror	
175. Unit o	of intensity of magnetic	field is:		
	Tesla	_(6)	Ohm	
(c)	Ampere	(d)	Volt-ampere	
D01 SET - A		[50]		
			Entrance Examination	

176. An electron is moving in an uniform magnetic field perpendicularly with velocity v. The force exerts on electron will be;

(a) ev/B

(b) evB

(c) eB/v

(d) vB/e

177. Electric motor converts;

- (a) Chemical energy into electric energy
- (b) Electric energy into mechanical energy
 - (c) Mechanical energy into electric energy
 - (d) E energy into chemical energy.

SSF JAMIA MILLIA ISLAMIA New Delhi

178. If Θ =magnetic flux, B = magnetic field intensity, A = area, then the correct relationship between them is;

-(a) $B = \Theta/A$

(b) $\Theta = B/A$

(c) A = BO

(d) $B = \Theta A$

	erator, increasing the no.	o. of turns in the coil;	
(a) Decrei	ases the electromotive fo	force (EMF)	
	smotive force (EMF) ren		
(e) Increas	es the electromotive for	rce (EMF)	
	motive force (EMF) bec	comes zero	
SSF	JAMIA MILLIA ISLAMIA New Delhi		
180. A DC generat	or is based on the princi	iple of;	
(a) Electroc	hemical induction (b	b) Electromagnetic induction	
(c) Magneti	c effect of current (d)	d) Heating effect of current	
181. The maximum	number of 40 W tube-l	lights connected in parallel wh	ich can
safely be run fro	om a 240 V supply with	h a 5 A fuse is:	
(a) 5	(b)		
(c) 20	(d)	30	

182.	The	The essential difference between an AC generator and a DC generator is					
	that;	that;					
	(a)	AC generator has an e	lectroma	gnet while a DC generator has			
		permanent magnet					
	(b)	DC generator will generate a higher voltage					
(c) AC generator will generate a higher voltage							
	(d)	AC generator has slip ring	s while t	he DC generator has a commutator			
183.	The	unit of measuring the mome	entum of	a moving body is;			
	(a)	m/s	(b)	kg.m/s			
_	(c)	kg.m/s ²	(d)	N m ² /kg ²			
		SSF JAMIA MILLIA ISL New Delhi	AMIA				
184.	The	inertia of a moving object of	depends	on:			
	i	Mass of the object					
	ii.	Momentum of the object					
	iii.	Speed of the object					
	iv.	Shape of the object Choo	se the co	errect option:			
	(a)	(i) and (ii)	(b)	only (i)			
-			-	2005.054			
	(c)	Only (ii)	(d)	(iii) and (iv)			
Walter of Con-			[53]				

185. A	n object of mass 2 kg is	sliding with	h a constant velocity of 4 m/s on a
fri	ction less horizontal tabl	e. The force	required to keep the object moving
wi	th the same velocity is:		
(a)	32 N	(b)	ON
(c)	2 N	(d)	8 N
186. If t	he energy in a longitudin	al wave trav	els from south to north, the particles
of t	he medium would be vib	rating;	
(a)	From north to south, o	only	
(b)	Both north and south		
(c)	From east to west, only	у	
(d)	Both east and west		
	SSF JAMIA MILLIA ISL	AMIA	
37. As	New Delhi a wave travels into a	medium i	n which its speed increases, its
	elength would;		
(a)	Decrease	(b)	Increase
(c)	Remain the same	(d)	none of the above
SET - A		[54]	
			Entrance Examination - 2021 - 22

Do:

192. An object at a distance of 30 cm from a concave mirror gets its image at the

same point. The focal length of the mirror is;

(a) - 30 cm

(b) 30 cm

(c) - 15 cm

(d) +15 cm

SSF JAMIA MILLIA ISLAMIA New Delhi

193. The energy released during nuclear fusion and nuclear fusion reaction is due

to;

- (a) Chemical reaction
- (b) The conversion of electrical energy
- (c) The conversion of gravitational
- (d) The conversion of mass into energy

194. A suitable unit for electric field strength is;

(a) V/C

(b) C/m²

(c) A

(d) N/C

195.	An el	ectrolyte is;		
	(a)	A metal (1	0) /	Solution
	(c)	A liquid that conducts current(d) /	All of above
196.	Elect	roplating is based on		
	(a)	Magnetic effect of electricity		
	(b)	Chemical effect of electricity		
	(c)	Heating effect of electricity		
	(d)	Physical effect of electricity		
		SSF JAMIA MILLIA ISLAMIA New Delhi		
197.	The	refraction of light is commonly	knov	vn as;
	(a)	Bending	(b)	Scattering
	(c)	Reflection	(d)	Interference
198	The	unit of specific resistance is;		
	(a)	Ohm	(b)	Mho
	(c)	Ohm-meter	(d)	Ohm per meter

199. Unit of magnetic flux is;

(a) Weber / metre²

(b) Weber

(c) Weber/metre

(d) Weber-metre²

SSF JAMIA MILLIA ISLAMIA New Delhi

200. Electric potential is a;

- (a) Scalar quantity
- (b) Vector quantity
- (c) Neither scalar quantity nor vector quantity
- (d) Sometimes scalar and sometimes vector